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Dynamics of colloidal suspensions of ferromagnetic particles in plane Couette flow: Comparison
of approximate solutions with Brownian dynamics simulations
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2ETH Zürich, Department of Materials, Institute of Polymers, CH-8092 Zu¨rich, Switzerland
3Urals State University, Lenin Avenue 51, 620 083 Ekaterinburg, Russia

~Received 7 February 2003; published 11 June 2003!

The stationary and oscillatory properties of dilute ferromagnetic colloidal suspensions in plane Couette flow
are studied. Analytical expressions for the off-equilibrium magnetization and the shear viscosity are obtained
within the so-called effective field approximation. We also investigate the predictions of a different approxi-
mation based on the linearized moment expansion. Direct numerical simulation of the kinetic model are
performed in order to test the range of validity of these approximations.
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I. INTRODUCTION

The prediction of macroscopic properties of magnetic fl
ids, such as the magnetization or viscous properties, fro
microscopic model remains—despite much efforts—a pr
lem of current research@1–3#. We here obtain approximat
expressions of macroscopic properties and test their rang
validity by comparison with Brownian dynamics simulatio
of the underlying kinetic model.

For very dilute systems, a kinetic model has been p
posed in Ref.@4# that successfully describes many expe
mental results. For nondilute ferromagnetic colloidal susp
sions a general statistical theory remains to be develope
order to account for the effects of chain formation in non
lute suspensions, the authors of Refs.@5,6# have proposed a
phenomenological extension of the kinetic model for ve
dilute suspensions, which is able to describe several rh
logical properties of ferrofluids in agreement with expe
mental results@7,8#. It should be mentioned that differen
aspects of chain formation are already studied~see, e.g., Ref.
@9#, and references therein!. Similar models are also used t
describe magneto- and electrorheological fluids~see, e.g.,
Ref. @10#, and references therein!.

In Refs. @6,8#, an approximate solution to the extend
kinetic model was employed in order to obtain its mac
scopic viscous properties. Alternative approximations to t
model have been considered in Refs.@3,11#. While the qual-
ity of different approximations to the kinetic model of dilu
systems, Ref.@4#, has been discussed in the literature~see
Refs.@12,13#!, we here compare the predictions of differe
approximations for the macroscopic magnetization and
cous properties to the numerical solution of the kinetic mo
of Ref. @6#. No comparison on the level of distribution func
tions is made since the approximations are constructe
derive macroscopic properties. We consider the case of w
stationary and small amplitude oscillatory Couette flow. F
a discussion of a particular approximation to the o
equilibrium magnetization in a more general flow situati
see Ref.@14#. Numerical results of viscous properties f
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various shear rates in stationary plane Couette flow with
magnetic field oriented in gradient direction are presented
Ref. @15#.

II. MODEL DEFINITION

We consider a dilute solution ofn identical rigid ellipsoi-
dal ferromagnetic particles per unit volume in a nonpo
Newtonian solvent. The shape of the ellipsoidal particles
completely described by the axis ratior. In Refs. @6,7#, a
distribution of axis ratiosr are considered in order to accou
for polydispersity effects in the chain-formation proces
Since in Refs.@6,7# the chains are assumed to be nonint
acting, it is sufficient to consider a monodisperse system
the sequel in order to discuss different approximation to
microscopic dynamics.

We assume that the orientationu of an ellipsoidal particle
coincides with the anisotropy axis of the particle. Then,
magnetic moment of a particle is given bym5mu, wherem,
the magnitude of the magnetic moment of a particle, is c
stant. Letf (u;t) denote the probability distribution functio
of a ferromagnetic particle being oriented parallel to the u
vector u at time t. The normalization is chosen such th
*d2u f(u;t)51, where the integration is performed over th
three-dimensional unit sphere.

The time evolution off in the presence of a local potentia
V(u) and a velocity fieldv(r) is given by the kinetic equa
tion @2,6,11#

] t f 52L•H S V1Bu3D•u2
1

z r
@LV# D f J 1DrL 2f .

~1!

In Eq. ~1!, we have introduced the rotational operat
L5u3]/]u, the friction coefficientz r of an ellipsoidal
particle with axis ratior in a Newtonian solvent with viscos
ity hs. The diffusion coefficientDr5kBT/z r , with kB , T
Boltzmann’s constant and temperature, respectively, defi
the Brownian orientational relaxation timet5(2Dr)

21. The
vorticity V and the symmetric velocity gradientD of the
velocity field v(r) are defined asV5“3v/2 andD5@“v
1(“v)T#/2. Finally, the so-called shape factorB is defined
©2003 The American Physical Society01-1
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asB5(r 221)/(r 211). In the case of spherical particles,r
51, B50, Eq.~1! reduces to the kinetic equation propos
in Ref. @4#.

In the following, we consider the case of a local magne
field H where the local potentialV is given by

V~u!52m•H52kBTu•h. ~2!

In Eq. ~2!, we have defined the dimensionless magnetic fi
h5mH/kBT. For later use, we define the amplitudeh of h
~Langevin parameter! and the unit vector in the direction o
the magnetic fieldĥ, h5hĥ. The stationary solution to Eq
~1! in the absence of flow gradients is given by the Bol
mann distribution

f 0~u!5
h

4p sinh~h!
exp~h•u!. ~3!

The macroscopic magnetization is given byM5M sat̂ u&,
where we have defined the saturation magnetizationM sat
5nm and ^•&5*d2u• f (u;t) denotes averages with respe
to the distribution functionf. In the stationary state~3!, the
magnetization is thereforeM05M satL1(h)ĥ, where L1(x)
5coth(x)2x21 is the Langevin function.

From the kinetic equation the following moment equ
tions are derived by multiplying Eq.~1! with u anduu, re-
spectively, and subsequent integration overu. The result
reads@6,11#

t] t^u&1^u&5tV3^u&1Bt~D•^u&2^uuu&:D!

1
1

2
~h2^uu&•h! ~4!

and

t] t^uu&13K uu2
1

3
1L 5tW•^uu&2^uu&•tW1Bt~D•^uu&

1^uu&•D22^uuuu&:D!1
1

2
~h^u&

1^u&h22^uuu&•h!. ~5!

The hydrodynamic stress tensorT for an incompressible
dilute suspension of rigid ferromagnetic ellipsoids can
decomposed into its antisymmetric part

T a5
nkBT

2
~h^u&2^u&h!, ~6!

and its symmetric partTs ~see, e.g., Refs.@2,6,11#!. The lat-
ter can be expressed with the help of Eq.~5! as

T s52hs~115fQ1!D15hsf$2Q3~D•^uu&1^uu&•D!

2Q23̂ uuuu&:D1Q0~W•^uu&2^uu&•W2] t^uu&!%.

~7!

The geometric coefficientsQi are defined in the Appendix A
06140
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III. APPROXIMATE SOLUTIONS OF THE KINETIC
MODEL FOR WEAK FLOWS

In the case of weak velocity gradients, the symmetric p
of the stress tensorT s is well approximated by

Ts52hs~115fQ1!D15hsf$2Q3~D•^uu&01^uu&0•D!

2Q23̂ uuuu&0 :D1Q0~W•^uu&0

2^uu&0•W2] t^uu&!%, ~8!

where ^•&0 denotes averages with the equilibrium distrib
tion function f 0. Thus, in order to evaluate the full stres
tensor, knowledge of the moments^u& and] t^uu& is necces-
sary. From Eqs.~4! and ~5!, we observe that the momen
equations form a hierarchy and that it is impossible to arr
rigorously at a closed set of equations for low order m
ments. This is true, in particular, for the magnetization a
the hydrodynamic stress tensor. This so-called closure p
lem occurs in many branches of statistical physics and
enormous amount of closure approximations have been
posed in the literature@2#. In this contribution, we discuss
two particular closure approximations that have been p
posed in Refs.@6# and @4#, respectively.

A. Effective field approximation

The effective field approximation~EFA! was introduced
in Ref. @4# to solve the closure problem for the kinetic equ
tion ~1! in the case of spherical particles (B50). The EFA,
which can be interpreted as the quasiequilibrium approxim
tion for the lowest order moment off ~see Ref.@11#!, can also
be applied to the case of rigid ellipsoidal particles withB
Þ0. Within the EFA, the nonequilibrium distributionf is
assumed to be of the equilibrium form~3! but with the mag-
netic field h replaced by an effective fieldje . Splitting the
effective fieldje5jeĵe into its normje and unit vectorĵe ,
Eq. ~4! becomes within the EFA

t
dje

dt
5S d

dje
ln L1~je! D 21S 3B

L2~je!

jeL1~je!
tD: ĵeĵe

1
h

je
ĥ• ĵe21D ~9!

and

t
dĵe

dt
5tV3 ĵe1Ba~je!~D• ĵe2 ĵeĵeĵe :D!

1
1

2 S 1

L1~je!
2

1

je
D ~h2 ĵeĵe•h!, ~10!

wherea(x)5122L2(x)/@xL1(x)#. FunctionsL j (x) are de-
fined recursively by L j 11(x)5L j 21(x)2(2 j 11)L j (x)/x
with L0(x)[1 and L1 is the Langevin function@2#. For
small amplitude oscillatory flow with frequencyv and con-
stant magnetic fieldh, explicit expressions for the resultin
effective field may be obtained. Consider small deviations
the effective field from the equilibrium value,Dje5je2h,
1-2
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Dje5je2h with uDjeu!h and letD ĵe denote the direction
of the off-equilibrium magnetization perpendicular to appli
magnetic field,D ĵe•ĥ50. Keeping only lowest order term
in the deviation from equilibrium,je5h1Djeĥ1hD ĵe , the
nonequilibrium distribution function simplifies to

f e~u!5 f 0~u!@11Dje•u2DjeL1~h!#. ~11!

It is readily verified that f e , Eq. ~11!, is normalized,
*d2u fe(u)51. Equations~9! and ~10! become, with the
help of Eq.~11! and linearization in the deviation from equ
librium,

Dje~ t !5S 11 i tv
hL18~h!

L1~h!
D 21

3B
L2~h!

L1~h!
tD~ t !:ĥĥ,

~12!

D ĵe~ t !5@11 i tvb~h!#21b~h!e~ t !, ~13!

where

e~ t !5tV~ t !3ĥ1Bta~h!@D~ t !•ĥ2ĥĥĥ:D~ t !#, ~14!

and b(x)52L1(x)/@x2L1(x)#. In Eqs. ~12! and ~13!, we
have assumed that, after the oscillatory flow has been app
for a sufficiently long time, the effective field oscillates wi
the same frequencyv as the applied flow. The predictions o
the EFA in case of weak stationary flow are obtained fr
Eqs.~12!–~14! for v50.

B. Linearized moment expansion

In order to solve the closure problem, the authors of R
@6# expand the distribution functionf around the equilibrium
distribution

f ~u!5 f 0~u!@11a•~u2^u&0!1b:~uu2^uu&0!#, ~15!

with unknown coefficientsa andb. The normalization off is
ensured sincê•&0 denotes averages with the equilibrium d
tribution function ~3!. Ansatz~15! is valid for small Pe´clet
number flows, wherea and b are first order in the velocity
gradient. Note that the linearized EFA, Eq.~11!, is obtained
as a special case of Eq.~15! for b50, since within the EFA
the corresponding term is second order in the deviation fr
equilibrium. The linearized moment expansion~LME! as-
sumes that the coefficientsa and b are independent of the
orientation u. Inserting the ansatz~15! into the moment
equations~4! and ~5! and linearization in the velocity gradi
ents leads to the following system of linear equations for
unknown coefficientsa andb:

A(1,1)
•a1A(1,2):b5E(1),

A(2,1)
•a1A(2,2):b5E(2), ~16!

whereE(1) and E(2) denote the right-hand side of Eqs.~4!
and~5! for h50, respectively, if all averages are perform
with the equilibrium distribution functionf 0. In Eq. ~16!, we
have defined the quantities
06140
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A(1,j )5C(1,j )S 11
d

dtD1
1

2
h•C(2,j ), ~17!

A(2,j )5C(2,j )S 31
d

dtD2~hC(1,j )!sym1h•C(3,j ), ~18!

for j 51,2, and the correlation functions of the order ofj
1k given by

~19!

The notation (•)sym implies symmetrization after multiplica
tion with a andb, respectively. We assume that the mome
^u& and ^uu& oscillate with the same frequencyv as the
applied flow. Then, the differential operatorsA( i , j ) become
ordinary, complex matrices and the resulting algebraic s
tem of linear equations~16! can be solved for the coefficient
a andb by matrix inversion.

IV. COMPARISON TO BROWNIAN DYNAMICS
SIMULATION

In the sequel, we consider exclusively the case of pla
Couette flow,v(r;t)5„ġ(t)y,0,0…, where ġ(t) denotes the
shear rate. The case of stationaryġ(t)5ġ0 and oscillatory
ġ(t)5ġ0eivt flow is considered separately. The Pe´clet num-
ber is defined as Pe5tġ0. Since the approximations intro
duced in Sec. III apply for weak flows, we choose Pe50.1 in
the sequel. We here consider magnetic fields that are orie
either in flow or in gradient direction. For magnetic field
that are oriented in the vorticity direction of the flow see R
@11#. Two representative values for the axis ratior have been
chosen,r 52 andr 55. While r 51 corresponds to spherica
particles that have been studied previously in Refs.@12,13#,
values ofr>5 give very similar results since in this case t
shape factorB is close to one.

In order to discuss the quality and range of validity of t
approximations presented in Sec. III, we compare those
dictions to the numerical solution of the kinetic equation~1!.
To this end, we perform Brownian dynamics~BD! simula-
tions of the corresponding Itoˆ stochastic differential equation
of the stochastic processUt @11#,

dUt5Pt•@~V3Ut1BD•Ut1Drh!dt1dWt#2DrUtdt,
~20!

wherePt512UtUt and Wt is a three–dimensional Wiene
process. By constructiond(Ut

2)50 due to Itô’s formula. En-
semble averages of arbitrary functionsA(Ut), whereUt are
solutions to Eq.~20!, converge with increasing ensemble
averageŝ A(u)&, with the correct distribution function. In
order to achieve accurate averages, an ensemble ofN5105

unit vectorsUt is evolved. As done in Ref.@11#, we use a
weak first-order scheme to integrate Eq.~20! numerically,
keeping the normalization fixed,Ut

251.
1-3
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A. Stationary flow

First, consider the case of stationary plane Couette fl

v(r)5(ġ0y,0,0), with constant shear rateġ0. The BD simu-
lations, Eq.~20!, were started either from the equilibrium
Eq. ~3!, or from a perfect oriented distribution and integrat
for a fixed time stepDt. The same stationary state was a
tained after'5t, independent of the initial configuration
Results for the stationary values were extracted as time
erages for 10t<t<20t at times 0.1t. Error bars for the
simulation results are determined by the standard devia
of the mean.

Figure 1 shows the influence of the time stepDt on the
simulation results for the stationary magnetization for
50.1 and magnetic field oriented in gradient direction w
h51. The axis ratio of the ellipsoid was chosen asr 55.
From Fig. 1, we notice that the results are more or less
dependent of the time step forDt/t&1022. Thus, we choose
a time stepDt51023t in the sequel in order to obtain accu
rate stationary results.

The shear viscosityhyx is defined ashyx5Tyx /ġ0, where
the hydrodynamic stress was evaluated from Eqs.~6! and~7!.
The symmetric and antisymmetric part of the stress ten
Eqs.~6! and~7!, define symmetric and antisymmetric cont
butions to the shear viscosityhyx ,

hyx5hyx
s 1hyx

a . ~21!

For weak flow,tġ0!1, the symmetric contribution to th
shear viscosityhyx

s can be obtained from Eq.~8! in the sta-
tionary state,

FIG. 1. The dependence of the stationary magnetization~a!
Mx /M sat, ~b! M y /M sat, on the time stepDt of the numerical inte-
gration for the dimensionless magnetic fieldh5(0,1,0). A plane
Couette flow with constant Pe´clet number Pe50.1 was considered
with x the flow direction andy the gradient direction, respectively
The value of the axis ratio of the ellipsoid was chosen asr 55.
Symbols represent time averages of the result of the BD sim
tions, the errorbars show the corresponding standard deviation
06140
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hyx
s 5hs1

5

2
hsfH 2Q114Q3

L1~h!

h
22Q23

L2~h!

h2

12S Q3L2~h!2Q23

L3~h!

h D ~ ĥx
21ĥy

2!

1Q0L2~h!~ ĥy
22ĥx

2!22Q23L4~h!ĥx
2ĥy

2J . ~22!

In order to obtain the resulting shear viscosity~21!, expres-
sions for the off-equilibrium magnetization have to be foun

The predictions of the EFA for stationary Couette flow a
obtained from Eqs.~12!–~14! by settingv50. One obtains
for the stationary off-equilibrium magnetization

MEFA2M0

M sat
53BPe

L18~h!L2~h!

L1~h!
ĥxĥyĥ1

2L1
2~h!

h2L1~h!
e,

~23!

where the vectore, Eq. ~14!, takes the form

e5
1

2
PeS ĥy$11Ba~h!@122ĥx

2#%

ĥx$211Ba~h!@122ĥy
2#%

22Ba~h!ĥxĥyĥz

D . ~24!

From Eqs.~23! and ~24!, the asymptotic behavior of the
off-equilibrium magnetization, if the magnetic field is or
ented in flow direction (p51) or in gradient direction (p
52), is given by

M n
EFA/M sat5PeH h

3 F ~21!p1
3

5
BG for h→0

2

h
@~21!p1B# for h→`,

~25!

wheren5x for p52 andn5y for p51. Thus, within the
EFA, the off-equilibrium magnetization increases linea
with h for h!1, the slope being related to the shape factoB
of the colloidal particles. Forh@1, the off-equilibrium mag-
netization decays ash21 where the prefactor depends onB.
From magnetization~23!, the antisymmetric contribution to
the shear viscosity within the EFA is easily obtained,

hyx
a,EFA5

tnkBT

2

hL1
2~h!

h2L1~h!
ĝyx

(2)~h!, ~26!

where

ĝyx
(2)~h!5ĥx

21ĥy
21Ba~h!~ ĥy

22ĥx
2!. ~27!

The predictions of the LME are obtained by solving the s
tem of Eqs.~16!–~18! for the coefficientsa and b. If the
magnetic field is oriented in flow~gradient! direction, only
the componentsay (ax) andbxy are nonzero. In the station
ary state, the differential operatorsAi j , Eqs.~17! and ~18!,
become ordinary matrices and the coefficientsa and b are
obtained by inversion of a 232 matrix @6#. Having obtained

a-
1-4
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the coefficientsa and b, the antisymmetric contribution to
the shear viscosity is found by

hyx
a,LME5

nkBTh

2ġ0
H L1~h!

h
~axĥy2ayĥx!

12
L2~h!

h
~bxnĥnĥy2bynĥnĥx!J . ~28!

Figure 2 shows the stationary off-equilibrium magnetiz
tion Mx5M sat̂ ux& for magnetic fields oriented in gradien
direction,h5(0,h,0). The Pe´clet number was chosen as P
50.1. From Fig. 2, we observe that both, the EFA and LM
predict the increase ofMx with increasingh for h,hc and
the slow decay forh.hc , where the value of the critica
dimensionless magnetic field ishc'2.5 and 2.6 for axis ra-
tios r 52 and r 55, respectively. While the EFA slightly
overpredict the values ofMx near hc , the LME is almost
indistinguishable from the results of the BD simulation f
all values ofh.

Figure 3 shows the relative change of the shear visco
Dyx5@hyx2hyx

s (0)#/tnkBT with and without magnetic field
as a function ofh. Here,hyx

s (0) denotes the symmetric she
viscosity~22! evaluated ath50. Same as in Fig. 2, the mag
netic field is oriented in gradient direction and the Pe´clet
number was chosen as Pe50.1. From Fig. 3, we observe tha
the agreement of both approximations with the result of
BD simulations is excellent for axis ratiosr 52 andr 55 and
all values ofh considered.

Now we consider the case where the magnetic field
oriented in flow direction. The EFA predicts that in this ca
the off-equilibrium magnetizationM y points in the direction
of decreasing velocity, see Eq.~25!. In Fig. 4, we show the
reduced off-equilibrium magnetizationM y /M sat as a func-
tion of h, where the magnetic field is oriented in flow dire

FIG. 2. Stationary off-equilibrium magnetizationMx /M sat in
plane Couette flow as a function of the Langevin parameterh. The
magnetic field was oriented in gradient direction. The Pe´clet num-
ber was chosen as Pe50.1. Symbols represent the result of the B
simulations. The EFA~full line! and LME ~dashed line! are indis-
tinguishable within the resolution of the figure. The value of t
axis ratio of the ellipsoid was chosen asr 52 for the lower andr
55 for the upper curves.
06140
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tion. Indeed, the results of the BD simulations agree with
predictions of the EFA quantitatively for weak and stro
fields. However, the values ofM y for intermediate values o
h are not accurately described by the EFA. The LME on
contrary provides a much better description of the BD res
for all values ofh.

Figure 5 shows the relative change of the shear visco
Dyx(h) for the same conditions as in Fig. 4. We observe
increase of the effective viscosity for all values ofh for axis
ratio r 52, while in caser 55 the effective viscosity is de
creased for sufficiently strong magnetic fields. From Fig.
we observe that the EFA is in qualitative agreement with
results of the BD simulation and provides quantitative ac

FIG. 3. Stationary relative change of shear viscosityDyx in
plane Couette flow as a function of the Langevin parameterh. The
magnetic field was oriented in gradient direction. The Pe´clet num-
ber was chosen as Pe50.1. Symbols represent the result of the B
simulations, full line corresponds to the EFA, dashed line to
LME. The value of the axis ratio of the ellipsoid was chosen ar
52 for the lower andr 55 for the upper curves.

FIG. 4. Stationary off-equilibrium magnetizationM y /M sat in
plane Couette flow as a function of the Langevin parameterh. The
magnetic field was oriented in flow direction. The Pe´clet number
was chosen as Pe50.1. Symbols represent the result of the B
simulations, full line corresponds to the EFA, dashed line to
LME. The value of the axis ratio of the ellipsoid was chosen ar
52 for the lower andr 55 for the upper curves.
1-5
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rate predictions in case of weak and strong magnetic fie
For intermediate values ofh, however, the predictions of th
EFA underestimate the results of the BD simulation. In t
case again the LME provides an improvement compare
the EFA.

B. Oscillatory flow

Now, we consider the case of oscillatory Couette flo

v(r;t)5„ġ(t)y,0,0…, with oscillatory shear rateġ(t)
5ġ0eivt andġ05g0v. The BD simulations were performe
for constant amplitudeg0 for different frequencies, where
the time step of integration was reduced for high oscillat
frequenciesv. After initial transient dynamics, an oscillator
stress response with frequencyv is observed. The effective
complex shear viscosityhyx(v) is defined by Tyx

5hyx(v)ġ(t). Decomposinghyx into its real and imaginary
part,hyx5hyx8 2 ihyx9 , hyx8 andhyx9 are determined from the
in-phase and out-of-phase response of the stress. Erro
determininghyx8 andhyx9 are estimated on the basis of the
values for the amplitude and phase lag of the oscillat
stress response. Storage and loss moduli are related t
complex shear viscosity byG8(v)5vhyx9 (v) and G9(v)
5vhyx8 (v).

Decomposing the resulting time-dependent magnetiza
into M(t)5M8(t)2 iM9(t), the EFA predicts

M n8/M sat5
1

2
tġ~ t !@~21!p1Ba~h!#

b~h!L1~h!

11~tv!2b2~h!
,

~29!

M n9/M sat5
1

2
tġ~ t !@~21!p1Ba~h!#

tvb2~h!L1~h!

11~tv!2b2~h!
.

~30!

FIG. 5. Stationary relative change of shear viscosityDyx in
plane Couette flow as a function of the Langevin parameterh. The
magnetic field was oriented in flow direction. The Pe´clet number
was chosen as Pe50.1. Symbols represent the result of the B
simulations, full line corresponds to the EFA, dashed line to
LME. The value of the axis ratio of the ellipsoid was chosen ar
52 for the upper andr 55 for the lower curves.
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As before,n5x, p52 corresponds to the magnetic field th
are oriented in gradient direction, whilen5y, p51 applies
if the magnetic field is oriented in flow direction.

The result of the EFA for the real and imaginary part
the effective complex shear viscosity is

hyx8 5hyx
s 2

5

2
hsfQ0L2~h!

~tv!2b2~h!

11~tv!2b2~h!
ĝyx

(1)~h!

1
tnkBT

4

hL1~h!b~h!

11~tv!2b2~h!
ĝyx

(2)~h!, ~31!

hyx9 5
5

2
hsfQ0L2~h!

tvb~h!

11~tv!2b2~h!
ĝyx

(1)~h!

1
tnkBT

4

~tv!hL1~h!b2~h!

11~tv!2b2~h!
ĝyx

(2)~h!, ~32!

where

ĝyx
(1)~h!5ĥy

22ĥx
21Ba~h!~ ĥx

224ĥx
2ĥy

21ĥy
2!. ~33!

For vanishing frequency,v→0, hyx9 →0 andhyx8 reduces to
the stationary viscosityhyx . The low and high frequency
behavior is given by

hyx8 ~v!5H hyx2a08~tv!2 for tv!1

a8̀ for tv@1,
~34!

hyx9 ~v!5H a09tv for tv!1

a9̀ /~tv! for tv@1,
~35!

where

a085
5

2
hsfQ0L2b2ĝyx

(1)1
tnkBT

4
hL1b3ĝyx

(2) ,

a095a08/b, a9̀ 5a08/b
3, and a8̀ 5hyx

s 2(5/2)hsfQ0L2ĝyx
(1) .

In Figs. 6 and 7, the dimensionless effective viscositiesuyx8
[(hyx8 2hs)/tnkBT anduyx9 [hyx9 /tnkBT are shown as a func
tion of the frequencyv of the applied shear flow. The mag
netic field was oriented in gradient direction with th
strengthh51. The axis ratios arer 52 and r 55, respec-
tively. From Figs. 6 and 7, we observe that the EFA provid
a good approximation fortv,1, while its accuracy for high
frequencies is poor. The LME is found to be accurate for
values oftv investigated here.

Figure 8 shows the dimensionless effective viscositiesuyx8
anduyx9 for the same conditions as in Fig. 7 but for a stro
magnetic field,h510. From Fig. 8, we deduce that in th
case both approximations provide an accurate descriptio
the BD results for all values oftv. In addition, the low
frequency expansion, given by the first part of Eqs.~34! and
~35!, respectively, provide an acceptable description of
BD results fortv<2.

e
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V. CONCLUSIONS

In the present contribution, we have compared the pre
tions of dynamic properties of different approximations
the kinetic model proposed in Ref.@6# to the result of
Brownian dynamics simulation. We found that the effecti
field approximation and the linearized moment expans
provide very good approximations to the stationary o
equilibrium magnetization as well as the stationary shear
cosity in case of weak Couette flow if the magnetic field
oriented in gradient direction. If the magnetic field is o
ented in flow direction, the predictions of the EFA devia
strongly from the results of the BD simulation for interm
diate values of the Langevin parameterh. The LME shows
good agreement with the simulation data for the whole ra
of h. For small amplitude oscillatory Couette flow, we o

FIG. 6. Dimensionless complex effective viscosity in oscillato
shear flow as a function of the reduced frequencytv. The real part
uyx8 corresponds to the upper and the imaginary partuyx9 to the lower
curves. The same conditions as in Fig. 2 were chosen withr 52 and
h51.

FIG. 7. Dimensionless complex effective viscosity in oscillato
shear flow as a function of the reduced frequencytv. The real part
uyx8 corresponds to the upper and the imaginary partuyx9 to the lower
curves. The same conditions as in Fig. 2 were chosen withr 55 and
h51.
06140
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serve that the predictions of the effective field approximat
become less reliable with increasing frequency, while
predictions of the linearized moment expansion deviate o
slightly over the whole frequency interval investigated he
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APPENDIX: GEOMETRIC COEFFICIENTS

The geometric coefficientsQi depend only on the axis
ratio r of the ellipsoid and are given explicitly by@11#

Q05
2~r 221!2

5r 2~2r 2b2b21!
,

Q15
4~r 221!2

5r 2~3b12r 225!
,

Q25
2Q1

3 F12
2r 2112~4r 221!b

4~2r 211!b212
G ,

Q35Q1F @r 2~b11!22#~3b12r 225!

4@b~2r 221!21#~r 21223r 2b!
21G ,

~A1!

and

Q23[3Q214Q3 , ~A2!

FIG. 8. Dimensionless complex effective viscosity in oscillato
shear flow as a function of the reduced frequencytv. The real part
uyx8 corresponds to the upper and the imaginary partuyx9 to the lower
curves for small values oftv. The same conditions as in Fig.
were chosen withr 55 andh510. The dotted lines correspond t
the low frequency expansion, Eq.~34! and ~35! for small tv.
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for convenience, where

b5
1

rAur 221u
3H cosh21r for r .1

cos21r for r ,1.
~A3!

The rotational friction coefficientz r is given by
i-
o

p.

06140
z r510hsv
Q0

B
, ~A4!

where v5 4
3 pab2 is the volume of the ellipsoid. Equatio

~A4! corrects a misprint in Eqs.~B1! and ~B3! of Ref. @11#.
In Refs. @2,6#, a different notation for the coefficientsQi is
used,bn55fQ0 , an55fQ1 , zn55f(2Q32BQ0), xn5
25f(Q2322BQ0), ln5B, andn5r .
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